Математическое моделирование солнечно-дизельных комплексов

10.11.23

Андреева К.А., Васильева А.А., Васьков А.Г., Ладанов Л.О., Шуркалов П.С.

Лаборатория СУ СДК

Изолированные объекты генерации существуют в 23 регионах России. Генерирующее оборудование – ДЭС.

[1] Объекты генерации в изолированных и труднодоступных территориях в России: аналитический доклад, март 2020 / Аналитический центр при Правительстве Российской Федерации, 2020. 78 с.

[2] https://nedradv.ru/nedradv/ru/page_industry?obj=541043ec87966411dd6058fbf1751b85

Для снижения объёмов потребления дизельного топлива возможно:

- проводить модернизацию устаревшего оборудования
- о внедрять энергосберегающие технологии
- использовать вспомогательное оборудование на базе ВИЭ, а также СНЭ

Структурная схема процесса моделирования работы СДК

Моделирование СФЭМ

Моделирование СФЭМ

Выработка электроэнергии СФЭМ:

$$P = V_{\rm M} \cdot I_{\rm M} = FF \cdot V_{\rm XX} \cdot I_{\rm K3}$$

Температуру модуля можно рассчитать как:

$$T_{\text{модуль}} = T_{\text{o.c}} + R \cdot exp(-a - b \cdot v_{\text{B}}) + \Delta T \cdot \frac{R}{1000},$$

где *a*, *b* и Δ*T* – константы, для стекла, ячейки и полимерного листа равны 3,56; 0,0750 и 3 о.е. соответственно; *v*_в – скорость ветра (м/с); *T*_{о.с} – температура окружающей среды (°C); *R* – солнечное излучение (Вт/м²).

Относительные годовые потери энергии от самозатенения:

$$RAEL = A \cdot e^{-2,3F} - 0,001 \cdot F + 0,01,$$

где А – параметр потери энергии (о.е.); F – коэффициент, учитывающий расстояние между солнечными модулями (1,5 о.е. < F < 5 о.е.).

[4] Abiola-Ogedengbe A., Hangan H., Siddiqui K. Experimental investigation of wind effects on a standalone photovoltaic (PV) module // Renew. Energy. 2015. Vol. 78. P. 657-665. [5] Brecl K., Topič M. Self-shading losses of fixed free-standing PV arrays // Renew. Energy. Elsevier, 2011. Vol. 36, Nº 11. P. 3211-3216.

^[3] Dubey S., Sarvaiya J.N., Seshadri B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World - A Review // Energy Procedia. Elsevier BV, 2013. Vol. 33.

Моделирование СНЭ

Состояние заряда аккумулятора можно определить как:

где Q(t) - текущая ёмкость АКБ, Q_n - номинальная ёмкость АКБ.

[6] Xiong R. et al. Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles // IEEE Access. 2018. Vol. 6. P. 1832-1843. [7] Chiasson J., Vairamohan B. Estimating the state of charge of a battery // IEEE Trans. Control Syst. Technol. 2005. Vol. 13, № 3. P. 465-470.

Моделирование СНЭ

Ограничение состояния заряда АКБ:

 $C(t-1) = SOC(t-1) < C_{max} → Заряд АКБ возможен;$ $C(t-1) = SOC(t-1) = C_{max} → Заряд невозможен;$ $C(t-1) = SOC(t-1) > C_{min} → Разряд возможен;$ $C(t-1) = SOC(t-1) = C_{min} → Разаряд невозможен.$

При этом С $_{max}$ зависит от типа АКБ, зачастую С $_{max} \ge 20\%$

Ограничения батарейного инвертора:

$$P_{\rm sap}(t) = C_{\rm max} - C(t-1);$$

 $P_{\text{зар}}(t) \le P_{\text{инв}} \to \text{Вся доступная энергия идет на заряд АКБ;}$ $<math>P_{\text{зар}}(t) > P_{\text{инт}} \to \text{Заряд АКБ ограничивается инвертором.}$

Удельный расход условного топлива с учётом изменения нагрузки на валу ДГУ:

$$b_{y.t\,i}^{\text{Д}\Gamma y} = \frac{b_{\text{Hom}}^{\text{A}}}{\eta_{\text{Hom}}^{\text{r}}} \cdot \left(0,9 + \frac{0,1}{\left(N_{\phi\,i}/N_{\text{Hom}\,i}\right)}\right) \cdot \frac{Q_{p}^{\text{H}}}{7000},$$

где $b_{\text{ном}}^{\text{д}}$ – показатель расхода топлива по дизель-генератору (гр./(кВт·ч)); $\eta_{\text{ном}}^{\text{г}}$ – КПД ДГУ (о.е.); $N_{\phi i}$ – средняя прогнозируемая нагрузка *i*-го дизель-генератора за соответствующий период (кВт); $N_{\text{ном} i}$ – паспортная мощность *i*-й ДГУ (кВт); $Q_{\text{p}}^{\text{н}} = 10180$ ккал/кг – теплота сгорания топлива.

Абсолютный расход ДГУ:

$$Q_i^{\text{ДГУ}} = \frac{b_{\text{у.т}\,i}^{\text{ДГУ}} \cdot N_i}{1,45 \cdot \rho},$$

где *р* = 860 кг/м³ - плотность дизельного топлива; 1,45 - коэффициент перевода дизельного топлива в условное топливо (о.е.).

Приказ от 30 декабря 2008 года № 323 «Об утверждении порядка определения нормативов удельного расхода топлива при производстве электрической и тепловой энергии» (с изменениями на 30 ноября 2015 года) / Министерство энергетики Российской Федерации, 2015.

Моделирование ДЭС

Ограничения работы ДГУ:

- Минимальная нагрузка ДГУ: $N_{min}^{{
 m Д}\Gamma {
 m y}} > 0,25 \cdot N_{
 m HOM}$
- ДГУ разных серий могут работать параллельно только в случае:

$$\frac{N_{\rm HOM}^{min}}{N_{\rm HOM}^i} \le \frac{1}{3}$$

Правила технической эксплуатации дизельных электростанций (ПТЭД) / Министерство топлива и энергетики Российской Федерации, 1993.

Основой расчета режима работы СДК является соблюдение баланса мощности между всеми источниками энергии и электрической нагрузки в каждый момент времени:

 $P_{\rm Harp}(t) = P_{\rm C \Phi \ni M}(t) \cdot \eta_{\rm MHB} \pm P_{\rm AKB}(t) + P_{\rm J \ni C}(t),$

где $P_{\text{нагр}}(t)$ – нагрузка потребителя; $P_{C\Phi \ni M}(t)$ – полезная мощность солнечных фотоэлектрических модулей; $\eta_{\text{инв}}$ – КПД инвертора; $P_{\text{АКБ}}(t)$ – мощность заряда/разряда системы накопления энергии; $P_{\text{ДЭС}}(t)$ – мощность дизельных генераторных установок.

Можно выделить следующие основные этапы расчета режима работы энергетического комплекса:

- 1. Определение электрической нагрузки потребителя на весь период планирования с принятым разбиением на расчетные интервалы.
- 2. Определение электроэнергии, вырабатываемой солнечными фотоэлектрическими модулями, и сравнение ее величины с нагрузкой за каждый расчетный интервал времени.

При этом возможны следующие сценарии:

а) Выработка СФЭМ перекрывает энергопотребление потребителя.

Заряд АКБ не ограничивается инвертором:

$$C(t) = C(t-1) \cdot k + P_{C\Phi \ni M}(t) \cdot \eta_{\text{инв}} - P_{\text{нагр}}(t);$$

 $P_{c.\Im} = 0.$

Заряд АКБ ограничивается инвертором:

$$C(t) = C(t-1) \cdot k + P_{3ap}(t);$$

$$P_{C.\Im}(t) = P_{C\Phi\Im M}(t) \cdot \eta_{\text{MHB}} - P_{\text{Harp}}(t) - P_{3ap}(t).$$

$$P_{\Pi\Upsilon 1}(t) = P_{\Pi\Upsilon 2}(t) = \dots = P_{\Pi\Upsilon n}(t) = P_{\Pi\Im C}(t) \rightarrow 0,$$

где k - коэффициент саморазряда АКБ; $P_{\text{с.э}}$ - величина свободной энергии; $P_{\text{ДГУ}\,i}(t)$ - мощность i-й ДГУ.

б) Когда выработка СФЭМ меньше энергопотребления или равна нулю.

Заряда АКБ достаточно для энергоснабжения нагрузки: $C(t) = C(t-1) \cdot k - P_{\text{HAFD}}(t) + P_{C\Phi \ni M}(t) \cdot \eta_{\text{WHB}};$ $P_{\Delta\Gamma Y 1}(t) = P_{\Delta\Gamma Y 2}(t) = \ldots = P_{\Delta\Gamma Y n}(t) = P_{\Delta \Theta C}(t) \rightarrow 0;$ Заряда АКБ недостаточно для энергоснабжения нагрузки: $C(t) = C(t-1) \cdot k \pm P_{\text{sap/pasp}}(t)$: Выработка СФЭМ равна нулю: $P_{\Pi \ni C}(t) = P_{\text{Harp}}(t);$ $C(t) = C(t-1) \cdot k.$ $P_{c_{2}} = 0.$

Апробация на примере СДК в г. Верхоянск, Республика Саха (Якутия).

- СЭС мощностью 952 кВт;
- СНЭ ёмкостью 1400 кВт*ч на основе свинцово-углеродных АКБ и 2-х двунаправленных инвертора по 150 кВт;
- ДЭС и 3-х пар ДГУ мощностью 400, 520 и 315 кВт.

Расчёт и прогнозирование режимов работы СДК. Характерный день в июле

Расчёт и прогнозирование режимов работы СДК. Результаты моделирования

Параметры сравнения		Условия работы СДК			
		Работа СДК без СНЭ	Работа СДК с ограничением по емкости СНЭ	Работа СДК с ограничением по емкости СНЭ и зарядной мощности батарейного инвертора	
C _{max}	кВт∙ч	0	1000	1000	
C _{min}	кВт∙ч	0	200	200	
N ^{инв} N _{3ap}	кВт∙ч	-	-	200	
$N_{ m pasp}^{ m ин m B}$	кВт∙ч	-	-	250	
WES	МВт	225,95	113,99	115,66	
$b_{\mathrm{y.r}}^{\mathrm{\mathcal{J}}\mathrm{\mathcal{G}}\mathrm{C}}$	гр./кВт∙ч	258,34	254,04	254,06	
<i>Q</i> дэс	Т	868,76	837,39	837,80	
КИУМ СЭС	%	8,72	10,00	9,98	

18

Итоги

Входные данные для алгоритма моделирования и прогнозирования режима работы СДК:

- Марки ДГУ с паспортными значениями потребления дизельного топлива и КПД генератора;
- КПД солнечного инвертора;
- Номинальная и минимальная ёмкость СНЭ;
- Данные о географической точке для получения данных о приходе СИ и температуры.

Выходные данные:

- Удельный и абсолютный расход дизельного топлива за расчётный период;
- Излишек энергии от СЭС;
- Оптимальный состав генерирующего оборудования.