НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Программа аспирантуры

Направление <u>16.06.01 Физико-технические науки и технологии</u> Направленность (специальность) <u>01.04.10 Физика полупроводников</u>

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору

«Оптические и фотоэлектрические явления в полупроводниках»

Индекс дисциплины по учебному плану Б1.В.ДВ.3.2

Всего: 72 часов

Семестр 5, в том числе

6 часов — контактная работа, 48 часа — самостоятельная работа, 18 часов — контроль Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 16.06.01 Физикотехнологические науки и технологии, утвержденного приказом министерства образования и науки РФ от 30 июля 2014 № 882, и паспорта специальности 01.04.10 Физика полупроводников, номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является формирование научной основы для изучения особенностей оптических и фотоэлектрических явлений в полупроводниках, применяемых в современных оптоэлектронных приборах.

Задачами дисциплины являются:

- освоение способности учитывать физические основы полупроводниковых оптоэлектронных приборов и применять методы расчета их характеристик, особенности приборов, изготовленных из различных полупроводниковых материалов;
- готовность рассчитывать, моделировать и исследовать параметры и характеристики оптоэлектронных приборов.

В процессе освоения дисциплины формируются следующие компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность самостоятельно выполнять физико-технические научные исследования для оптимизации параметров объектов и процессов с использованием стандартных и специально разработанных инструментальных и программных средств (ОПК-3);

- способность анализировать состояние научной проблемы путем подбора, изучения и анализа литературных и патентных источников (ПК-2);
- способность самостоятельно ставить конкретные задачи научных исследований в области физики полупроводников и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и зарубежного опыта (ПК-3).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения учебной дисциплины обучающиеся должны демонстрировать следующие результаты образования:

знать:

- основные оптические и фотоэлектрические явления в полупроводниках и современные достижения в данной области с использованием новейшего отечественного и зарубежного опыта (ПК-3);
- основные оптические и фотоэлектрические явления в полупроводниках, методы их анализа путем подбора, изучения и анализа литературных и патентных источников (ПК-2).

уметь:

- критически анализировать и оценивать современные научные достижения в области оптических и фотоэлектрических явлений в полупроводниках (УК-1);
- рассчитывать параметры оптических и фотоэлектрических явлений в полупроводниках с использованием стандартных и специально разработанных инструментальных и программных средств (ОПК-3);
- анализировать состояние научной проблемы путем подбора, изучения и анализа литературных и патентных источников (ПК-2);

- применять методы расчета и моделирования оптических и фотоэлектрических явлений в полупроводниках с использованием стандартных и специально разработанных инструментальных и программных средств (ПК-3);
- собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию по оптическим и фотоэлектрическим явлениям в полупроводниках (ПК-2, 3).

владеть:

- приемами и методами оценки оптических и фотоэлектрических явлений в полупроводниках с использованием с использованием стандартных и специально разработанных инструментальных и программных средств (ОПК-3);
- навыками работы с информационными базами данных и поиском информации об оптических и фотоэлектрических явлений в полупроводниках (ПК-2).

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1. Оптические свойства полупроводников и их влияние на параметры фотоприемников

Задачи курса. Характеристики излучения. Законы Планка, Стефана-Больцмана, Вина. Пропускание атмосферы и спектральные области применения фотоприёмников (ФП). Оптические свойства полупроводников и их влияние на параметры фотоприемников.

Уравнения Максвелла и их решения. Когерентное излучение. Временная и пространственная когерентность. Основные свойства фотонов.

Оптические свойства полупроводников и их влияние на параметры фотоприемников.

Туннельный эффект. Ударная ионизация. Законы сохранения энергии при ионизации атома решетки.

Механизмы поглощения света в полупроводниках.

2. Люминесиенция полупроводников

Основные понятия и определения. Рекомбинационное излучение. Спонтанные и вынужденные переходы. Теория Ван Русбрека-Шокли. Условие инверсной населенности. Усиление излучения. Условия получения лазерного режима.

3. Применение спонтанных излучательных переходов

Механизмы возбуждения электролюминесценции. Предпробойная электролюминесценция.

Инжекционная электролюминесценция. Основы теории излучательной рекомбинации. Материалы, используемые для конструирования светодиодов. Коэффициенты инжекции, пропускания и вывода.

4. Применение вынужденных излучательных переходов

Физические явления в полупроводниковых лазерах. Вклад российских ученых в развитие квантовой электроники. Старение источников излучения.

5. Внутренний фотоэффект и его применение

Приемники излучения с внутренним фотоэффектом. Поглощение свободными носителями. Фотопроводимость «горячих» электронов.

Влияние центров прилипания на чувствительность собственных фоторезисторов (СФР). Эффект вытягивания в СФР.

Частотные характеристики СФР, случай линейной и квадратичной рекомбинации. Основы теории шумов фоторезисторов.

6. Основы работы фотоприемников с потенциальными барьерами

Особенности поглощения и преобразования падающего излучения в pn-переходе. Темновые токи через pn-переход. Фототок. Влияние поверхностной рекомбинации.

Эффект Мосса-Бурштейна и его влияние на механизм поглощения излучения в фотодиодных структурах.

Эффекты лавинного умножения в фотодиодных структурах.

7. Матричные полупроводниковые приёмники изображений

Способы преобразования заряда в электрический сигнал. Физика МДПструктуры. Уравнение Лапласа и Пуассона. Простейшая структура ПЗС. Энергетические диаграммы. Сравнение работы ПЗС с поверхностным и объемным каналом.

8 Оптические свойства полупроводниковых наноструктур

Явления в квантово-размернымх слоях и их влияние на работу приборов. Практическое применение квантовых точек.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 1 семестр – дифференцированный зачет.

Вопросы для самоконтроля и для проведения зачета

- 1. Какие диапазоны длин волн электромагнитного излучения рассматриваются в оптоэлектронике?
 - 2. Как рассчитать поток излучения, падающий на фотоприемник?
 - 3. Сформулируйте законы Планка, Стефана-Больцмана, Вина.
 - 4. Запишите и поясните уравнения Максвелла и их решения.
 - 5. Что такое люминесценция? Перечислите виды люминесценции.
- 6. Что такое электролюминесценция? Перечислите виды электролюминесценции.
- 7. Особенности поглощение света в полупроводниках. Основные механизмы поглощения. Коэффициент поглощения света.
- 8. Фундаментальное поглощение света в полупроводниках. Прямые и непрямые переходы. Зависимость коэффициента поглощения от энергии фотона.

- 9. Влияние температуры на фундаментальное поглощение света в полупроводниках. Применение эффекта.
- 10. Влияние электрического поля на край фундаментального поглощения света в полупроводниках. Эффект Келдыша-Франца, применение.
- 11. Фундаментальное поглощение света в сильно легированных полупроводниках. Эффект Бурштейна-Мосса, применение.
 - 12. Экситонное поглощение света в полупроводниках.
 - 13. Внутризонное поглощение света в полупроводниках.
 - 14. Теория Ван Русбрека-Шокли.
 - 15. Основные виды генерации света в полупроводниках.
- 16. Рекомбинационное излучение в полупроводниках. Время жизни излучательной рекомбинации.
- 17. Основные требования к полупроводниковым материалам, пригодным для изготовления источников излучения.
 - 18. Спонтанное излучение в полупроводниках.
- 19. Вынужденное излучение в полупроводниках. Связь между спонтанным и вынужденным излучением.
- 20. Системы с инверсной населенностью. Условие для начала усиления (генерации) излучения в системе с инверсной населенностью.
- 21. Условия достижения инверсной населенности в полупроводниках. Случаи прямых и непрямых переходов зона-зона.
- 22. Методы достижения инверсной населенности в полупроводниках (методы накачки).
- 23. Метод накачки с помощью инжекции p-n-переходом вырожденных полупроводников.
 - 24. Физические явления в полупроводниковых лазерах.
- 25. Физические явления в полупроводниковых лазерах на квантовых ямах и квантовых точках.
 - 26. Физические явления в фоторезисторах.

- 27. Частотные характеристики собственных фоторезисторов (СФР) , случай линейной и квадратичной рекомбинации..
 - 28. Спектральные характеристики СФР.
 - 29. Основы теории шумов фоторезисторов.
- 30. Особенности поглощения и преобразования падающего излучения в *pn*-переходе.
- 31. Темновые токи через pn-переход. Фототок. Влияние поверхностной рекомбинации.
- 32. Эффект Мосса-Бурштейна и его влияние на механизм поглощения излучения в фотодиодных структурах.
 - 33. Частотные характеристики фотодиодных структур.
 - 34. Эффекты лавинного умножения в фотодиодных структурах.
- 35. Физика МДП-структуры. Уравнение Лапласа и Пуассона. Простейшая структура ПЗС.
- 36. Явления в квантово-размернымх слоях и их влияние на работу приборов.
 - 37. Практическое применение квантовых точек.

Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Шалимова К.В. /Физика полупроводников. СПб.: изд-во Лань. 2010. 384 с. ISBN 978-5-8114-09228-8.
- 2. Розеншер, Э. Оптоэлектроника / Э. Розеншер, Б. Винтер. М. : Техносфера, 2006. 592 с. ISBN: 5-94836-031-8.
- 3. Якушенков Ю.Г. Основы оптико-электронного приборостроения, Москва, Изд. «Логос», 2013 ISBN 978-5-98704-652-4
- 4. Шуберт, Ф. Е. Светодиоды / Ф. Е. Шуберт ; пер. с англ. под ред. А. Э. Юновича. М. : Физматлит, 2008. 495 с. : ил. Пер. изд.: Light-emitting diodes / Schubert, Fred. Cambridge/ ISBN 978-5-9221-0851-5.

- 5. Астайкин А. И. Основы оптоэлектроники: [учебное пособие для вузов] / А. И. Астайкин, М. К. Смирнов. М., 2007. 275, [2] с. : ил. ISBN 978-5-06-005551-1
- 6. Панов М.Ф., Соломонов А.В., Филатов Ю.В. Физические основы интегральной оптики. М.: ИД "Академия", 2010 г., 427 с. ISBN 978-5-7695-5976-1
- 7. Пихтин А.Н. Оптическая и квантовая электроника, учебник. М.: "Высшая школа", 2012 г. 573 с. ISBN: 5-06-002703-1, 978-5-4372-0004-9

Дополнительная литература:

- 8. Филачев А.М., Таубкин И.И., Трищенков М.А. Твердотельная фотоэлектроника. Фотодиоды. М.: Физматкнига, 2011. ISBN 978-5-89155-203-6
- 9. Филачев А.М., Таубкин И.И., Трищенков М.А. Современное состояние и магистральные направления развития твердотельной фотоэлектроники. М.: Физматкнига, 2010. ISBN 978-5-89155-191-6
- 10. Филачев А.М., Таубкин И.И., Трищенков М.А. Твердотельная фотоэлектроника. Фоторезистры и фотоприемные устройства. М.: Физматкнига, 2011. 368 с. ISBN 978-5-89155-210-4
- 11. Филачев А.М., Таубкин И.И., Трищенков М.А. Твердотельная фотоэлектроника. Физические основы. М.: Физматкнига, 2007. 384 с. ISBN 978-5-89155-128-4.