Научные разработки в области здравоохранения и пищевой промышленности

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Устройства

- 1. Прибор контроля давления в манжетах эндотрахеальных и трахеостомических трубок
- 2. Оптический сенсор на основе наноуглерода
- 3. Фотоприемники широкого диапазона
- 4. Универсальный мобильный высокоманёвренный робототехнический комплекс

Программное обеспечение

1. Программно-аппаратный комплекс для картирования содержания пигментов в листьях растений

Технология

1. Разработка научно обоснованных принципов построения автоматизированных систем поддержания температуры на базе термоэлектрических батарей с замкнутым контуром перемещения теплоносителя

Программно-аппаратный комплекс

1. Программно-аппаратный комплекс для картирования электрической активности сердца

Национальные проекты технологического лидерства (НПТЛ)

«Средства производства и автоматизации» – промышленность. Включает в себя федеральные проекты по развитию станкоинструментальной промышленности, промышленной робототехники и автоматизации производства, литейного и термического оборудования.

«Новые материалы и химия» – материалы. Запланировано создание новых производств и центров компетенций, увеличение добычи дефицитного сырья, развитие технологий.

«Технологическое обеспечение продовольственной безопасности». Аграрный сектор планируют переоснастить, создать современную систему производства и переработки сельскохозяйственной продукции.

«Новые технологии сбережения здоровья». Направлен на решение проблем регенеративной медицины, а также на развитие активного долголетия. Предполагает внедрение современных медицинских технологий с целью оптимизации системы здравоохранения и повышения качества медицинских услуг.

Сведения о планируемом проекте

Назначение: снижение осложнений, при длительной ИВЛ: травмы трахеи, свищи и стенозы, ВАП, грыжи, травма голосовых связок, ишемия трахеи и обструкция дыхательных путей.

Технические характеристики: автоматическое измерение и поддержка давления в манжетах ЭТТ и ТСТ, режим временной задержки давления, режим периодической декомпрессии, режим сдутия (для облегчения экстубации), функция контроля давления и обнаружение утечки в манжете)

Научная новизна: точность и непрерывность измерений обеспечивающих в отличие от ручных манометров. Интеграция системы обратной связи, которая поддерживает давление в безопасном диапазоне (20-30 см H_2O), предотвращая гипер- или гипоинфляцию манжеты.

Опытный образец прибора установленный на аппарате ИВЛ

Потенциальное применение

Уровень готовности (TRL №6): разработан опытный образец. Проведены лабораторные испытания имитирующие ИВЛ человека и поведение человека при ИВЛ влияющие на давление в манжете ЭТТ и ТСТ.

Эффекты ОТ внедрения: СНИЗИТЬ риск вентилятор-ассоциированной возникновения пневмонии 11,2% против 22% при нерегулярном контроле давления В манжете; СНИЗИТЬ микроаспирацци и ВАП при использовании непрерывного контроля И поддержания давления в манжете ЭТ-трубки (9,8% против 26,2%); снизить процент пациентов с обильной микроаспирацией (18% против 46%).

Основные заказчики:

ООО «МедТехИнновации», АО «Здравмедтех-М»

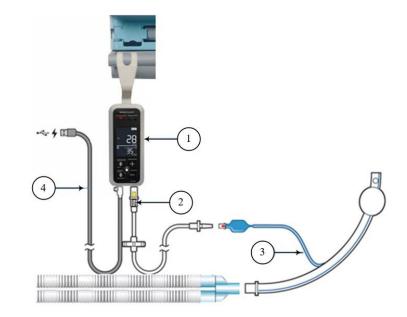


Схема подключения к дыхательному контуру, где: 1. Прибор контроля давления в манжетах; 2. Удлинительная трубка; 3. Разъем манжеты (ЭТ-трубки); 4. Капель питания USB

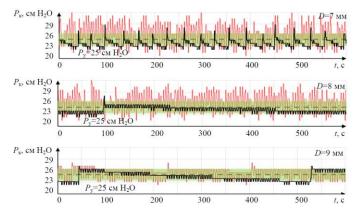




Фото лабораторного стенда испытаний прибора контроля давления в манжетах эндотрахеальных и трахеостомических трубок

Переходные характеристики зависимости поддержания давления Ру=25 смH2O в манжетах разного диаметра в течении 600 секунд при инспираторном давлении Pinsp равным 10 и 30 смH2O: а - ЭТТ диаметр 7 мм; б - ЭТТ диаметр 8 мм; в - ЭТТ диаметр 9 мм. И схема лабораторного стенда испытаний

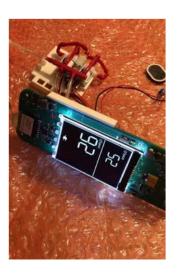
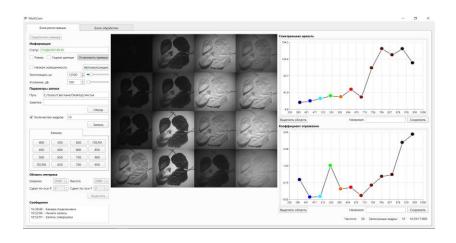


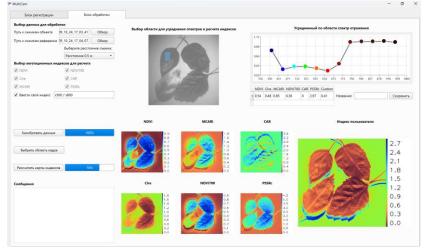
Фото опытного образца прибора контроля давления в манжетах эндотрахеальных и трахеостомических трубок

Сведения о планируемом проекте

Назначение: дистанционный мониторинг пространственного распределения концентрации хлорофиллов и каротиноидов в листьях растений в задачах сельского хозяйства, экомониторинга и прогнозирования чрезвычайных ситуаций.

Функции:

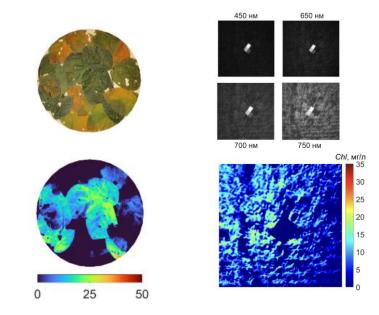

- 1. Регистрация спектральных изображений
- 2. Управление параметрами мультиспектральной камеры
- 3. Коррекция пространственных и спектральных искажений данных
- 4. Сохранения зарегистрированных изображений
- 5. Определение пространственного распределения спектрального коэффициента отражения листьев растения.
- 6. Определение пространственного распределения набора вегетационных индексов
- 7. Усреднение спектрального коэффициента отражения по области кадра
- 8. Задание пользовательского вегетационного индекса
- 9. Определение пространственного распределения концентрации хлорофиллов и каротиноидов



Функции 1-5. Интерфейс блока регистрации программной части ПАК

Функции 6-8. Интерфейс блока обработки программной части ПАК

Потенциальное применение

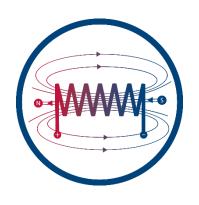

Уровень готовности программного продукта (TRL Nº4): разработано ПО ДЛЯ мультиспектральной камеры с функциями записи данных, настройки параметров съёмки методами дистанционного определения хлорофилла коррекцией листьях искажений. спектральных

№ свидетельства государственной регистрации: № 2024611161, 2025614379.

Эффекты от внедрения: ПАК применяется в точном земледелии для оптимизации удобрений, защиты растений, оценки продукции и мониторинга, а в экомониторинге — для контроля полигонов и загрязнений.

Отечественные или зарубежные аналоги: MicaSense, Cubert, SILIOS Technologies.

Основные заказчики: Мираторг Холдинг, Агрокомплекс им. Н. И. Ткачева.



Функция 9. Пространственное распределение концентрации хлорофиллов в листьях, полученное в лабораторных (слева) и полевых (справа) условиях

Контакты

Кафедра Диагностических информационных технологий

Заведующий кафедрой Хвостов Андрей Александрович

Разработка научно обоснованных принципов построения автоматизированных систем поддержания температуры на базе термоэлектрических батарей

Разработка научно обоснованных принципов построения автоматизированных систем поддержания температуры на базе термоэлектрических батарей

Сведения о реализованном проекте

Назначение: разработка предназначена приборов, проектирования управляющих температурой теплоносителей, жидких циркулирующих по замкнутому контуру на базе элементов Пельтье, применяемых в различных областях: приборостроении, энергетике, медицине, пищевой промышленности. Технические характеристики: расчетный модуль C#. языке результаты реализован выгружаются в файлы .csv. Применение метода приближений последовательных позволяет настроить переходный процесс выхода режим регулятора температуры.

Научная новизна: учитываются температурные зависимости теплофизических свойств и вязкости теплоносителя и режим работы источника питания.

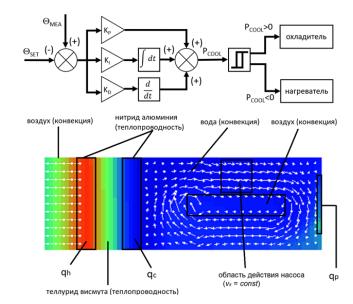
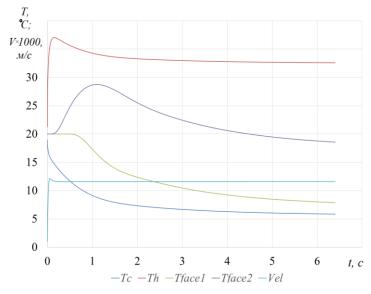


Схема разработанного регулятора температуры и визуализация теплообменной модели (цифрового двойника) системы поддержания температуры на базе элемента Пельтье

Разработка научно обоснованных принципов построения автоматизированных систем поддержания температуры на базе термоэлектрических батарей



Потенциальное применение

Уровень готовности (TRL № 4): разработана программа, проведены серии расчетов, демонстрируют хорошее совпадение с экспериментальными исследованиями на лабораторных стендах.

Эффекты от внедрения: сокращение временного цикла проектирования устройств охлаждения и нагрева на базе элементов Пельтье, а также снижение трудоемкости процедуры настройки регуляторов температуры (цифровых ПИД-регуляторов)

Основные заказчики: потенциальные заказчики - предприятия-разработчики компактных чиллеров, устройств для двухсторонней термостабилизации электронных компонентов и датчиков, медицинской аппаратуры и мобильных холодильников

Переходный процесс пуска холодильной машины. На графике показаны температуры в различных точках теплообменного контура с скорость потока, измеренная в области нагрузки (теплообменного аппарата)

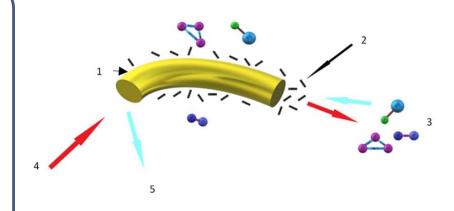
Контакты

Кафедра Электроснабжения промышленных предприятий и электротехнологий

Заведующий кафедрой Михеев Дмитрий Владимирович

Оптический сенсор на основе наноуглерода

Оптический сенсор на основе наноуглерода



Сведения о планируемом проекте

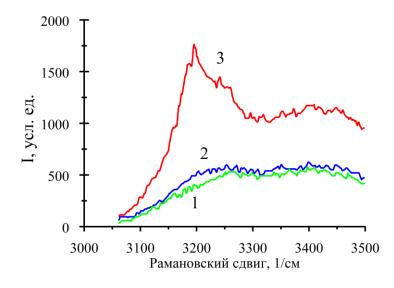
Назначение: оптический сенсор предназначен для диагностики заболеваний, включая злокачественные опухули, на основе анализа сигнала комбинационного рассеяния (КР) света, несущего информацию о химическом составе исследуемой полости живого организма.

Технические характеристики: проводящие наноуглеродные частицы обеспечивают высокую чувствительность сенсора и в качестве усиливающего объекта позволяют избежать явлений деградации прибора, связанных с разрушением металлических наночастиц в химически активной среде.

Научная новизна (уникальность): возможностью неинвазивной диагностики внутренних органов человека.

Конфигурация оптического сенсора: Лазерный луч 4 вводится в световод 1, покрытый слоем прозрачного полимера, содержащего в качестве примеси углеродные наночастицы 2 (нанотрубки, графен). Отраженный сигнал 5, усиленный наночастицами, содержит спектр КР, несущий информацию о химическом составе исследуемой области 3.

Оптический сенсор на основе наноуглерода

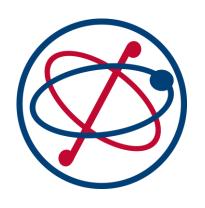

Потенциальное применение

готовности (TRL 3): Уровень выполнены эксперименты, подтверждающие возможность усиления сигнала комбинационного рассеяния (КР) света углеродными нанотрубками (УНТ). Выполнены эксперименты, подтверждающие колебаний существование плазмонных образцах термически восстановленного графена, ЧТО подтверждает возможность использования этого материала в качестве усиливающего сигнал объекта.

Эффекты от внедрения: внедрение результатов проекта позволит обеспечить медицину новым диагностическим средством.

Основные заказчики:

ВМК-Оптоэлектроника, НТО «ИРЭ-Полюс», ООО «СОЛ инструментс».



Спектр КР воды в отсутствие УНТ (1); спектр КР воды в присутствии УНТ высокой поверхностной плотности (2); спектр КР воды в присутствии УНТ низкой поверхностной плотности (3).

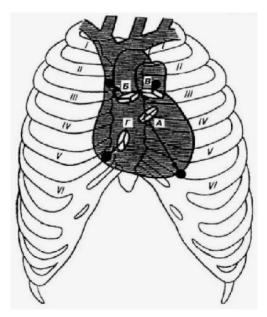
Контакты

Кафедра Общей Физики и Ядерного Синтеза

Заведующий кафедрой **Дедов Алексей Викторович**

Программно-аппаратный комплекс для картирования электрической активности сердца

Программно-аппаратный комплекс для картирования электрической активности сердца



Сведения о планируемом проекте

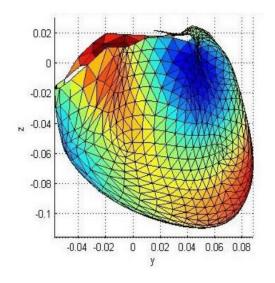
Назначение: комплекс предназначен для неинвазивного картирования электрической активности сердца по сигналам с поверхности грудной клетки.

Технические характеристики: число униполярных каналов: 50-100. Частота оцифровки: 2 кГц; разрядность АЦП: 24 бит; время регистрации: 15-30 с. Многоканальный кардиоусилитель с цифровой фильтрацией; компьютерная реконструкция источников и динамическое электрокартирование.

Научная новизна: реализовано динамическое картирование с временным разрешением до миллисекунд для анализа деполяризации и реполяризации в реальном времени

Проекция сердца на переднюю грудную стенку

Программно-аппаратный комплекс для картирования электрической активности сердца



Потенциальное применение

Уровень готовности (TRL №5): изготовлен опытный образец, проведены лабораторные и пилотные клинические испытания на ограниченной выборке.

Эффекты от внедрения: сокращение времени исследования и стоимости на порядок по сравнению с томографическими методами при сопоставимой диагностической точности. Ускорение маршрутизации пациентов и снижение числа аритмиями инвазивных точной процедур за счет неинвазивной локализации очагов.

Основные заказчики: кардиологические центры, отделения аритмологии и интервенционной кардиологии. Научно-исследовательские институты и университетские клиники, занимающиеся электрофизиологией сердца.

Карта распределения электрического потенциала на поверхности сердца. Цветовая шкала отражает мгновенные значения потенциала: красные/желтые области – зоны более высокого потенциала (ранняя активация), синие – более низкого (поздняя активация).

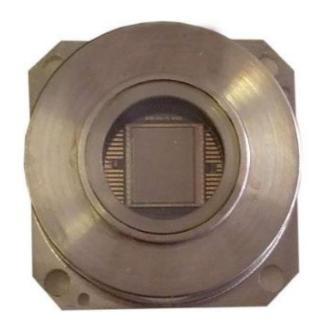
Контакты

Кафедра основ радиотехники

Заведующий кафедрой Шалимова Елена Владимировна

Фотоприемники широкого диапазона

Фотоприемники широкого диапазона



Сведения о планируемом проекте

Назначение: полупроводниковые фотоприемники предназначены для регистрации излучения в широком спектральном диапазоне от 0,5 до 5 мкм. Устройства применяются в медицинском оборудовании, бытовых приборах и обороннопромышленном комплексе.

Технические характеристики: диапазон спектральной чувствительности составляет от 0,5 до 5 мкм. Фотоприемники выпускаются как в виде одиночных элементов, так и в многоэлементном исполнении.

Научная новизна: применение метода гидрохимического осаждения для получения микрокристаллических фотоприемных структур.

Корпусированный фотоприемник с матричной структурой

Фотоприемники широкого диапазона

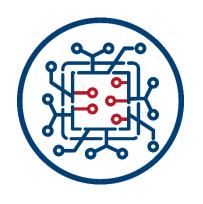
Потенциальное применение

Уровень готовности (TRL №2): разработаны и апробированы основные технические решения.

Эффекты от внедрения: создание относительно недорогих фотоприемников с характеристиками, не уступающими зарубежным аналогам. Снижение эксплуатационных расходов за счет отсутствия необходимости в системах охлаждения.

Основные заказчики:

медицинские учреждения и производители медицинского оборудования. Предприятия оборонно-промышленного комплекса и производители бытовой техники.



Многоэлементный фотоприемник широкого спектрального диапазона

Контакты

Кафедра Электроники и наноэлектроники

Заведующий кафедрой Зезин Денис Анатольевич

Универсальный мобильный высокоманёвренный робототехнический комплекс

Универсальный мобильный высокоманёвренный робототехнический комплекс

Сведения о планируемом проекте

Назначение: универсальный мобильный робототехнический комплекс предназначен для выполнения широкого спектра задач в закрытых помещениях.

Технические характеристики: робототехнический комплекс построен на базе платформы всенаправленного движения с меканум-колёсами, обеспечивающей абсолютную мобильность с минимальным радиусом поворота 0 метров и максимальной скоростью 1 м/с. Манипулятор имеет высоту рабочей области 1,1 метра и предназначен для работы на подготовленных поверхностях в помещениях.

Научная новизна: обеспечение уникальной маневренности в ограниченном пространстве.

Общий вид мобильного робототехнического комплекса с захватным устройством

Универсальный мобильный высокоманёвренный робототехнический комплекс

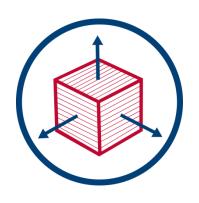
Потенциальное применение

Уровень готовности (TRL №5): разработка находится на стадии прототипа, готового для демонстрации основных функциональных возможностей.

Эффекты от внедрения: внедрение комплекса обеспечивает автоматизацию складских операций, повышение производительности персонала и возможность удалённого выполнения санитарной обработки, дезинфекции и других опасных работ.

Основные заказчики:

предприятия складской логистики, производственные компании и медицинские учреждения. Комплекс также может быть востребован организациями, занимающимися санитарной обработкой и дезинфекцией помещений.



Общий вид мобильного робототехнического комплекса с шестиступенном манипулятором

Контакты

Кафедра Робототехники, мехатроники, динамики и прочности машин

Заведующий кафедрой Меркурьев Игорь Владимирович