Национальный исследовательский университет «МЭИ» Кафедра гидроэнергетики и возобновляемых источников энергии

ПОЛУНАТУРНОЕ МОДЕЛИРОВАНИЕ СЭС В УСЛОВИЯХ, ПРИБЛИЖЕННЫХ К РЕАЛЬНЫМ

Выполнили:

Харитонов Д.А.

Инженер-исследователь

лаборатории СУСДК

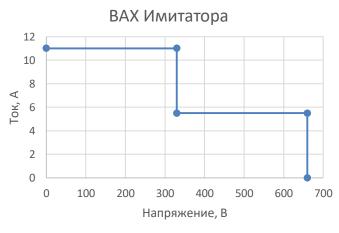
Васьков А.Г

Заведующий лабораторией СУСДК

Актуальность вопроса

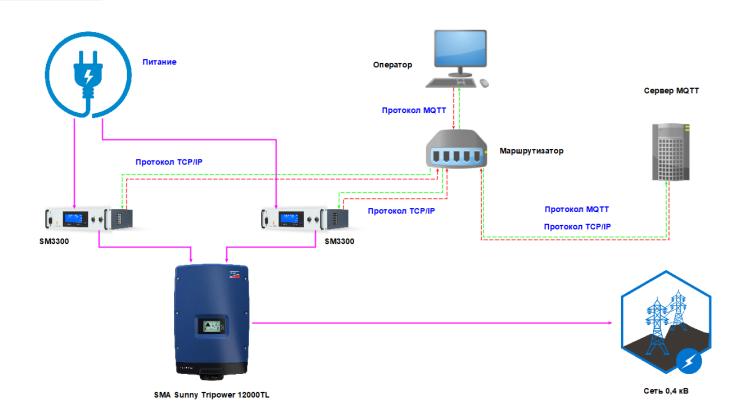
B текущей ситуации развития применения солнечных электростанций (C3C) B изолированных системах, возникает необходимость проведения имитационных испытаний различного электротехнического оборудования систем управления им.

Макет СЭС на базе НИУ «МЭИ»



Имитаторы СЭС

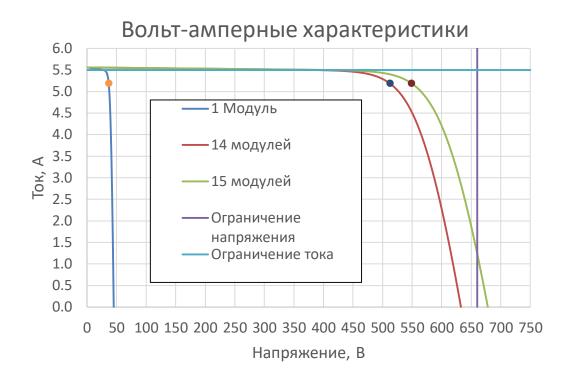
Инвертор в составе макета СЭС



Входные параметры постоянного тока (DC)	
Параметр	Значение
Минимальное напряжение, В	150
Напряжение запуска, В	188
Напряжение поиска точки максимальной мощности, В	440 ÷ 800
Номинальное напряжение, В	580
Максимальное напряжение, В	1000
Ток на вход 1, А	18
Ток на вход 2, А	10
Максимальная мощность, Вт	12275
Выходные параметры переменного тока (АС)	
Номинальное напряжение, В	230
Номинальная частота, Гц	50
Номинальная мощность при 230 В/50 Гц, Вт	12000
Номинальный фазный ток при 230 В, А	17,4
Эффективность	
Максимальная эффективность, %	98,2

Структурная схема соединений

Оценка параметров массива ФЭМ



Параметры ФЭМ:

- Uxx = 45.2 B;
- $I_{K3} = 5,56 A$;
- Umpp = 36,6 B;
- Impp = 5,19 A;

 $U_{OCARRAY} \leq U_{DCMAX}^{\text{Имитатора}}$

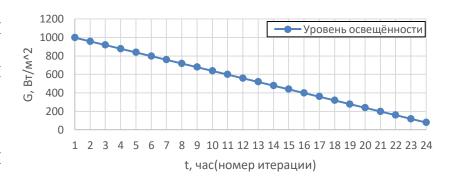
 $I_{SCARRAY} \leq I_{DCMAX}^{\text{Имитатора}}$

Краткое описание математической модели

Последовательность моделирования с использованием библиотеки PVLIB:

- 1. Моделирование вольт-амперной характеристики ФЭМ исходя из температуры
 - характеристики Φ ЭМ исходя из температуры $T_m = T_a + G \cdot exp(a + b \cdot WS),$ солнечных элементов
- 2. Моделирование вольт-амперной характеристики батареи ФЭМ на основе полученной характеристики единичного ФЭМ с учётом схемы соединения модулей в батарею.

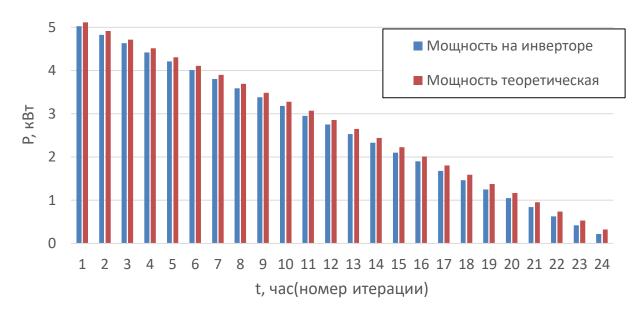
$$T_C = T_m + \frac{E}{E_0} \Delta T,$$


3. Моделирование системы преобразования постоянного тока в переменный

с учётом схемы соединения модулей в батарею.
$$I = I_L - I_0 \left[exp \left(\frac{V + IR_s}{nN_s V_{th}} \right) - 1 \right] - \frac{V + IR_s}{R_{sh}}$$

Проведение экспериментов

- 1. Определение зависимости мощности на выходе инвертора от уровня солнечной инсоляции.
- 2. Определение зависимости мощности на выходе инвертора от температуры окружающей среды.
- 3. Моделирование режима работы СЭС в переменных условиях окружающей среды, приближенных к реальным.


Эксперимент №1

Условия эксперимента:

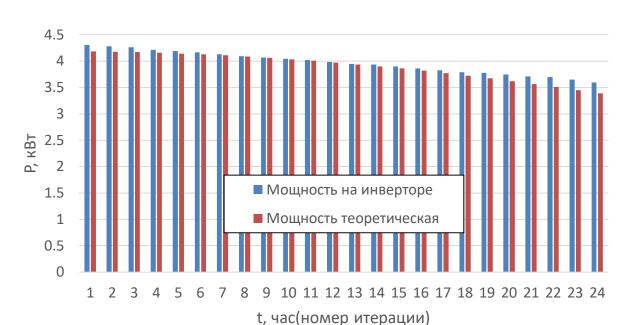
Освещённость: от 1000 до 80 Вт/м²

Температура ячеек: 25°С

Среднее отклонение мощности от теоретических значений составило -8,11%

Минимальное отклонение: -1,78 % при G: 1000 Bт/м²

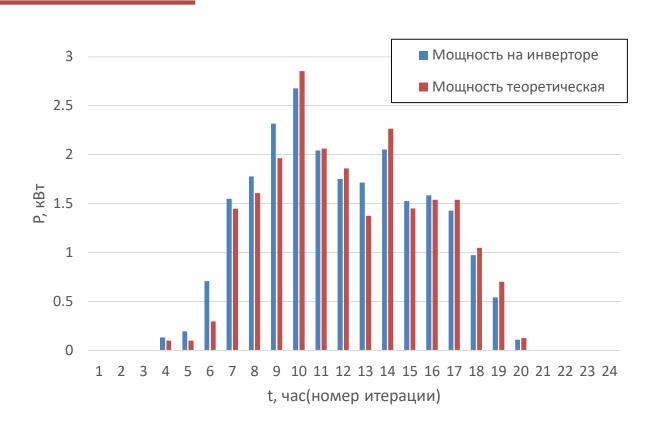
Максимальное отклонение: -47,14 % при G: 80 Bt/m^2


Эксперимент №2

Условия эксперимента:

Освещённость: 800 Вт/м²

Температура ячеек: от 0 до 92 °C


Среднее отклонение мощности от теоретических значений составило 1,9%

Минимальное отклонение: 0,13% при Т ячеек: 28°C

Максимальное отклонение: 5,89% при Т ячеек: 92°C

Эксперимент №3

Среднее отклонение мощности от теоретических значений составило 4,46%

Минимальное отклонение:

-0,98 % при:

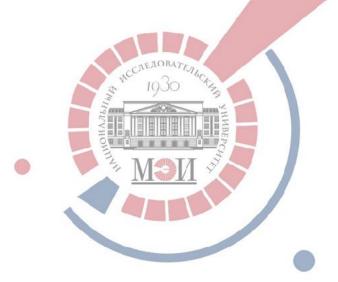
G: 402 BT/M^2

Т ячеек: 5,5°C

Максимальное отклонение:

58,29% при:

G: 73 BT/M^2


Т ячеек: 3,4°С

Выводы

- 1. Погрешность получаемых данных не превышает 5 % при интенсивности солнечного света не менее 480 Bт/м² и температуре не более 80 °C.
- 2. Полунатурное моделирование позволяет сэкономить время и ресурсы, при этом достигая высокой точности оценки производительности и надежности СЭС.
- 3. Имеющийся в НИУ «МЭИ» имитационный макет СЭС позволяет осуществлять полунатурное моделирование при наиболее часто встречающихся сочетаниях параметров окружающей среды.

Спасибо за внимание!

