

Рис. 1.1. Дифракционные картины (a, c, e) и электронно-микроскопические изображения высокого разрешения (b, d, f) монокристалла (a, b), поликристалла (c), нанокристалла в аморфной матрице (d) и некристаллического материала (e, f).

	OEPAEOTKA	Скорость	Характеристика	Стеклообразу-
№ п/п		охлаждения,	образцов	ющая
		град/сек	_	способность
1	Отжиг больших зеркал телеско- пов	10-5	Объемные	Хорошая
2	Отжиг оптических стекол	~ 2.104	Объемные	Хорошая
3	Отжиг обычных стекол	10 ⁻³ - 10 ⁻²	Объемные	Хорошая
4	Закаливание на воздухе	1 - 2	Объемные	Хорошая
5	Закаливание в воду	8 - 10	Объемные	Плохая
6	Закаливание в воду в тонкостен- ной (0,5 мм) ампуле	35	1 грамм вещества	Плохая
7	Закаливание в воду в тонкостен- ной (0,5 мм) ампуле	180	15 мг вещества	Очень плохая
8	Разбрызгивание расплава	~ 103	Порошок	-
9	Спиннингирование	10 ⁵ - 10 ⁶	Лента толщиной десятки мкм	-
10	Распылительная закалка под действием ударной волны	10° - 10 ¹⁰	Порошок	_

Рис. 1-2. Скорости охлаждения расплава, используемые в различных случаях.

Раздаточный материал по дисциплине «Физика и технология неупорядоченных полупроводников» © Попов А. И. popovai@mpei.ru

Система	Содержание халькогена, атомные %
As - S	34 - 49. 55 - 95
As - Se	40 - 100
As - Te	42 - 54
Sb - S	66
Sb - Se	
Sb - Te	
Si - S	50 - 69
Si - Se	80-100
Si - Te	78 – 80
Ge - S	55 - 60, 66 - 90
Ge - Se	75 – 100
Ge - Te	78 - 88

Рис.1.3. Области стеклообразования в системах $A^{IV}B^{VI}$ и A^VB^{VI}

Рис. 1.4. Области стеклообразования в системах $A^{I}B^{V}C^{VI}$: Cu – As – Se (сплошная линия), Ag – As – S (пунктирная линия) Ag – As – Te (точки).

Рис.1.5. Характеристики взаимного расположения атомов в случае линейной (a) и тетраэдрической (b) структур.

Рис. 1.6. Межатомные взаимодействия в линейном полимере.

$$I_{c}(S) = I(S) + \varphi(S)$$
(1) $\int I_{s}(S)S^{2}dS = \int I_{c}(S)S^{2}dS$, (3)
 $\frac{1}{j}\int I(S)S^{2}dS = \int f^{2}(S)S^{2}dS$, (2) $I_{c}(S) = \varphi(S) + jf^{2}(S)$, (4)

$$i(S) = \frac{I_{s}(S) - f^{2}(S)}{f^{2}(S)} = \frac{1}{j} \left[\frac{I_{s}(S)}{f^{2}(S)} - \frac{I_{c}(S)}{f^{2}(S)} \right] = \frac{1}{j} i_{1}(S) \quad (5)$$

$$i_{1}(S)dS = 0 \quad (6a) \quad i \to M(V \left[I_{c}(S) - I_{a}(S) \right] \quad (6a)$$

$$\int i(S)dS = 0 \qquad (6); \ \int i_1(S)dS = 0 \qquad (6a) \qquad j_{\min} > MAX \left\{ \frac{I_c(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \right\} \qquad (9)$$

$$I_u(S) = f^2(S) \left[\frac{1}{j} i_1(S) + 1 \right] \qquad (7) \qquad i < MIN \left\{ \frac{I_c(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \right\} \qquad (10)$$

$$\begin{aligned}
\int J & \int j_{max} < MIN\{\frac{I_c(S)}{f^2(S)}\} \\
g_{\mu}(S) &= \frac{1}{j}\varphi(S) = f^2(S)\left[\frac{1}{j} \cdot \frac{I_c(S)}{f^2(S)} - 1\right] \\
g_{\mu}(S) &= \frac{1}{j}\rho(S) = f^2(S)\left[\frac{1}{j} \cdot \frac{I_c(S)}{f^2(S)} - 1\right] \\
\int \frac{I_s(S)}{f^2(S)} dS &= \int \frac{I_c(S)}{f^2(S)} dS \\
(10) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)}\right] \\
(11) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \\
(12) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_c(S)}{f^2(S)} \\
(13) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \\
(14) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \\
(15) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \\
(16) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(17) & I_1(S) = \frac{I_s(S)}{f^2(S)} - \frac{I_s(S)}{f^2(S)} \\
(18) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(19) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(10) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(11) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(12) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(13) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(14) & I_1(S) = \frac{I_s(S)}{f^2(S)} \\
(15) & I_1(S) \\
(15) & I_1(S) = \frac{I_s(S)}{f^2$$

$$\Phi PPA(r) = 4\pi r^2 \rho(r) = 4\pi r^2 \rho_0 + \frac{2r}{\pi} \int_{s_0}^{s_2} S \cdot i(S) \cdot \sin(Sr) dS$$
(14)

					гасч	er no	рын	рова	ннои	nnit	enchi	SHOCI	ги ра	ссен	Бапи	N DUICE	трон	UB			
S,		D,	OTH.	ед.		t=	2"	t=	4"	t=	8"	t=1	16"	t=3	32"	I_{2}^{qp} ,	à	I_{3}	I_c	,	
Á	2	4	8	16	32	t	1/16	t	1/1_6	t	1/1.	t	1/10	t	1/10	отн. ед	ſ	f^2	f^2	11	1,,
0.2																					
0.4																					
0.6																					
5.8																					
6.0																					

Рис. 1.7. Расчет нормированной интенсивности рассеяния электронов.

Раздаточный материал по дисциплине «Физика и технология неупорядоченных полупроводников» © Попов А. И. popovai@mpei.ru

Рис. 1.8. ФРРА некристаллических селена (а) и кремния (б).

Рис. 1.9. Тонкая структура края поглощения рентгеновского излучения.

Рис. 1.10. Спектры КР стеклообразных материалов системы As – Se.

Рис. 1.11. Звездообразная (а) и затененная (б) конфигурации атомов кремния.

Рис. 1.12. Модель ячейки аморфного кремния.

Рис. 1.13. Нахождение положения атома, соответствующего минимуму СКО.

Рис. 1.14. Экспериментальная ФРРА (—) и ФРРА модели (---) стеклообразного селена.

Энергия деформации ковалентных связей для тетраэдрических систем: $V = \frac{3\alpha}{16d_0^2} \sum_{ij} \left[(R_i - R_j)^2 - d_0^2 \right]^2 + \frac{3\beta}{8d_0^2} \sum_{ijl} \left[(R_j - R_i)(R_l - R_l) - \frac{d_0^2}{3} \right]^2,$ где: d. - ; i,j,l -; Rigo - ; a, B-Двухкоординированные системы: Энергия деформации длин связей: $V_b = 0.5\alpha \sum (R_b^2 - d_0^2)^2$, (1); do где: Rij= Ri-Rj -; a -Энергия деформации угла связи: $V_a=0.5\beta{\sum_i}{\left(\!{R_{ii}\cdot R_{ij}}\!\right|\!-c)^2}$, (2); **β**где: Rij=Ri-Ri, Rij=Ri-Rj -; c -Энергия ван-дер-ваальсова взаимодействия: $V_{\nu-\nu} = \sum V_{\nu}$ $V_{li} = \begin{cases} -\frac{A}{(R_{li})^6} + \frac{B}{(R_{li})^{12}}, & R_{li} \le R_c \\ 0 & R_{li} > R_c \end{cases},$ (3) : R.≈4÷5 Å где: А и В -Энергия деформации двугранных углов: $V_d = \gamma \sum_{k} \left[\left(R_{ij} \cdot R_{jk} \right) \left(R_{jk} \cdot R_{kl} \right) - K \right]^2$, (4) ;Kгде: y- ; i,j,k,l-

Рис. 1.15. . Энергия деформации ковалентных связей для тетраэдрических и линейных систем.

	АЛЛОТРОННЫЕ ФОРМЫ СЕЛЕНА						
№	Аллотропные формы	Молекулярный состав					
	K	ристаллические					
1	Тригональная	Параллельные спиралевидные цепи Sen					
2	α - моноклинная	Кольца Seg					
3	β -моноклинная	Кольца Ses					
4	Ромбоэдрическая	Кольца Se ₆					
	He	кристаллические					
1	Красная аморфная	Кольца Seg					
2	Черная аморфная	?					
3	Стеклообразная	Цепи и/или кольца					

Рис. 1.16. Аллотропные формы селена

Рис. 1.17. Элементарные ячейки кристаллических модификаций селена: а - элементарная ячейка тригональной модификации; b- кольцевая молекула; с и d - упаковка кольцевых молекул в кристаллическую решетку α и β - моноклинного селена (а и с – постоянные кристаллической решетки).

Раздаточный материал по дисциплине «Физі	ика и технология неупорядоченных полупроводников»
©Попов А.	И. popovai@mpei.ru

Инфракрасное поглощение в диапазоне частот 50-300 см ⁻¹							Комб	оннацио ассеяни	ационное еяние			
Стеклообразный	Положение, см ⁻¹	95	120	135	230	254	Сдвиг, см ⁻¹	110- 115	140	~235	250- 256	
селен	характер	пик	плечо	пик	плечо	пик	характер	пик	пле- чо	плечо	пик	
<i>а</i> - моноклин-	Положение, см ⁻¹	92-95	120	-	-	254	Сдвиг, см ⁻¹	113	-	-	250	
ный селен	характер	дублет	пик	-	-	пик	характер	пик	-	-	пик	
Тригональный	Положение, см ⁻¹	-	-	144	230	-	Сдвиг, см ⁻¹	-	143	237	-	
селен	характер	-	-	пик	пик	-	характер	-	пик	пик	-	

Рис. 1.18. Результаты исследований селена методами колебательной спектроскопии.

Рис. 1.19. Распределение длин (а), углов связей (б) и двугранных углов (в) в модели некристаллического селена.

Рис. 1.20. Уровни локализованных состояний, соответствующие точечным дефектам в некристаллических полупроводниках.

Рис. 1.21. Зависимость электропроводности (а) и её энергии активации (в) от уровня легирования а – Si:H.

Рис. 1.22. Влияние химической модификации на температурную зависимость электропроводности пленок ХСП.

Рис. 1.23. Температурная зависимость электропроводности ХСП (GeSe_{3.5})_{1-x}Bi_x для x = 0 (1), x = 0.04 (2), x = 0.06 (3), x = 0.08 (4), x = 0.10 (5), x = 0.12 (6) и x = 0.14 (7).

Рис. 1.24. Концентрационные зависимости электропроводности (σ_{293K}), энергии активации электропроводности (E_{σ}) и половины ширины оптической запрещенной зоны ($E_{opt}/2$) ХСП системы (GeSe_{3.5})_{1-x}Bi_{x.}

	способ воздействия	характеристика чувствительных свойств	группы чувствительных свойств	примеры чувствительных свойств
Ближний порядок	Различные методы и режимы получения	Все свойства	Все свойства	Все свойства
Средний прядок	Воздействия в период или после изготовления внешними факторами	Свойства, связанные с перегруппировкой структурных единиц	Механические свойства, фазовые переходы	
Морфология	Изменения режимов получения	Свойства, зависящие от макро- неоднородностей	Электрические оптические	Электропроводи- мость на перемен- ном токе
Подсистема дефектов	Обработки, воздействующие на подсистему дефектов	Свойства, зависящие от распределения плотности локализованных состояний	Электрические, фото- электрические	Полевая зависимость электропроводи- мости

Уровни структурной модификации

Рис. 1.25. Уровни структурной модификации неупорядоченных полупроводников

Рис. 1.26. Зависимости удельного сопротивления (а) и ширины оптической запрещенной зоны (b) пленок а-С:Н от режимов их изготовления (T_s – температура подложки, Р – мощность высокочастотного разряда).

	Группа Координационное число (N _c)							
Период	IVA	N _c	VA	N _c	VIA	N _c		
2	6 C 12	2 3 4						
3	14 Si 28	2 3 4	15 P 31	3	16 S 32	2		
4	32 Ge 72,5	4	33 75 ^{As}	3	34 Se 79	2 4 6		
5			51 Sb 122	3	52 Te 128	2 3- рас- плав		

Рис. 1.27. Структурная модификация на уровне ближнего порядка.

Рис. 1.28. Зависимость величины изменения микротвердости ХСП в результате изменения тепловой предыстории материала от величины КЭСМ.

гру	ЛПЫ	системы А _x ^{IV} (А _x ^V)В _{1-x} ^{VI} значения <i>x</i>							
IVA	VA	0.60	0.50	0.40	0.33	0.25	0.20	0.11	VIA
Ge 4 4 Ge 4 4			GeS 3.00 2.73	Ge ₂ S ₃ 2.80 2.49	GeSe ₂ 2.66 2.40 GeS ₂ 2.66 2.30	GeSe ₃ 2.50 2.30 GeS ₃ 2.50 2.23	GeSe ₄ 2.40 2.24 GeS ₄ 2.40 2.19	GeSe ₈ 2.22 2.12 GeS ₈ 2.22 2.10	Se 2 2 S 2 2
	As 3 3 As 3 3	As ₂ Se ³ 2.60 2.53 As ₃ S ₂ 2.60 2.49	AsSe 2.50 2.42 AsS 2.50 2.38	As ₂ Se 3 2.40 2.31 As ₂ S ₃ 2.40 2.26	AsSe ₂ 2.33 2.25 AsS ₂ 2.33 2.22	AsSe ₃ 2.25 2.19 AsS ₃ 2.25 2.17	AsSe ₄ 2.20 2.16 AsS ₄ 2.20 2.14	AsSe ₈ 2.11 2.09 AsS ₈ 2.11 2.08	Se 2 2 S 2 2

Рис. 1.29. Структурная модификация на уровне среднего порядка и морфологии.

Рис. 1.30. Распределение плотности локализованных состояний в щели подвижности а-Si:H до (сплошная линия) и после (пунктирная линия) обработки ультрафиолетовым излучением (доза 10¹⁹ см⁻²) по результатам: 1 – метода постоянного фототока, 2 – моделирования температурной зависимости проводимости, 3 – анализа токов, ограниченных пространственным зарядом.

груг	пы 1 ви	ит сист	емы	группа
IVA	VA			VI A
С				
Si	Р			
Ge	As	As ₂ S ₃	S - Se	S
		As ₂ Se ₃	Se -Te	Se
		As ₂ Te ₃		Te

Рис.1.31. Структурная модификация на уровне подсистемы дефектов.

Рис. 1.32. Зависимость величины статистического разброса порогового напряжения переключения от величины КЭСМ.

Рис. 1. 33. Экспоненциальная форма края оптического поглощения в некристаллических полупроводниках (при комнатной температуре).

Рис. 1.34. Материалы, состоящие из фиксированных по размеру молекул.

Полиацителен Рис. 1.35. Полимерные материалы

Рис. 1.36. Схема орбиталей и связей для двух sp² гибридизированных атомов углерода.

Рис. 1.37. Схема бензольного кольца и энергетической структуры органической молекулы.

Рис. 1.38. Полупроводниковый полимер (poly-p-phenylene-vinylene PPV).

Рис.2.1. Схема испарителя для напыления пленок многокомпонентных ХСП.

Рис.2.2. Факторы, определяющие параметры пленок при вакуумном напылении.

Рис. 2.3. Вакуумная установка для изготовления электрофотографических цилиндров.

Рис. 2.4. Установка полунепрерывного действия для получения приборов на основе a-Si:Н методом разложения силана в плазме тлеющего разряда.

Рис. 2.5. Установка непрерывного действия для получения фотоэлектрических преобразователей на основе a-Si:Н методом разложения силана в плазме тлеющего разряда.

Рис.2.6.Электропроводность микрокристаллического гидрогенизированного кремния.

Рис. 2.7. Концентрационные зависимости проводимости и энергии активации проводимости фторированного (легирующие элементы мышьяк, фосфор и бор) и гидрогенизированного аморфного кремния.

Рис. 2.8. Схема установки для получения пленок а-Si:Н каталитическим осаждением из газовой фазы.

Рис. 2.9. Зависимость электропроводности пленок a-Si:H, полученных методом ионноплазменного распыления, от электропроводности мишени.

Рис. 2.10. Запись оптической информации.

Рис. 2.11. Схема электрофотографического процесса.

Рис. 2.12. Схематическое изображение пикселя (а) и внешний вид (б) медицинского электрорадиографического детектора.

Рис. 2.13. Зависимости квантового выхода в видиконах от напряженности поля при различных толщинах селенового слоя.

Рис.2.14. Конфигурационная диаграмма, иллюстрирующая эффект фотоиндуцированной кристаллизации селенового слоя в видиконе.

Рис. 2.15. Аэрофотографии ночного города, сделанные обычным видиконом и видиконом с лавинным умножением носителей заряда.

Рис. 2.16. Конструкция видикона высокой чувствительности

Рис. 2.17. Реверсивные изменения интенсивности рассеяния рентгеновского излучения в трисульфиде мышьяка при облучении светом и отжиге.

Рис.2.18. Влияние облучения электронами на результаты дифракционного эксперимента в ХСП.

Рис. 2.19. Считывание информации в оптических дисках.

Рис. 2.20. Двухмерное (а) и трехмерное (б) изображения поверхности ROM-диска в сканирующем зондовом микроскопе.

Рис. 2.21. Окружение атома германия в GST225 в кристаллической (а) и аморфной (b) фазах (слабые связи атома германия обозначены более тонкими линиями).

Рис. 2.22. Сравнение характеристик перезаписываемых оптических дисков.

Рис. 2.23. Структура шестислойного архивного диска.

Рис. 2.24. Электроснабжение на территории России.

Рис. 2.25. Площадь, которую необходимо закрыть батареями для удовлетворения потребности в энергии всего мира (левый квадрат), Европы (средний квадрат) или только Германии (правый квадрат).

Рис. 2.26. Фотоэлектрическая станция на a-Si:Н в Калифорнии, США (4800 модулей размером 5.4 х 0.4 м², 0,5 МВт).

Рис. 2.27. Фотоэлектрические станции на а – Si:H на 5 MBt (а) и 100 кВт (в) Сибири.

Рис. 2.28. Спектральная зависимость кпд и структура солнечных элементов с одним p-n переходом (а), с двумя p-n переходами на основе одного материала (b), с двумя p-n переходами на основе материалов с разной шириной запрещенной зоны (c) и с тремя p-n переходами на основе материалов с разной шириной запрещенной зоны (d) (пунктирной линией обозначен спектр солнечного излучения на поверхности Земли).

Рис. 2.29. Структура и спектральная зависимость кпд (отн. ед.) ФЭП с эффектом оптического удержания на основе аморфный – микрокристаллический кремний.

Рис. 2.30. Конструкция (а) и энергетическая диаграмма (б) ФЭП на основе гетероперехода монокристаллический – аморфный кремний

Рис. 2.31. ФЭП на основе органики: с одним гетеропереходом (А), с двумя гетеропереходами (Б), с объемным гетеропереходом (В) и с упорядоченным гетеропереходом (Г).

Рис. 2.33. Конструкция жидкокристаллического дисплея.

Рис. 2.32. Принцип действия жидкокристаллического дисплея

Рис. 2.35. Гибкий 45-ти сантиметровый дисплей на органических светодиодах с разрешением 1200 х 810 пикселей (LG, 2016 год).

Рис. 2.36. Зависимость сопротивления элемента памяти от величины тока программирования.

Рис. 2.37. Структура ячеек памяти на фазовых переходах: а – с минимизацией сечения контакта, б – с минимизацией объема GST, в – с торцевым электродом, с – пример практической реализации (активная область отмечена пунктирной линией).

Рис.2.38. Распределение сопротивлений ячеек энергонезависимой памяти в интегральной схеме.

Хим. состав	% GeTe	‰ Sb₂Te₃	Температура кристаллизации	Время записи	Стабиль- ность
$\begin{array}{c} \mathrm{G}e_2\mathrm{S}b_2\mathrm{T}e_5\\ (\mathrm{G}\mathrm{S}\mathrm{T}225) \end{array}$	66	33	у м е н	^y ^w	y M e
$\begin{array}{c} \mathrm{G}e_1\mathrm{S}b_2\mathrm{T}e_4\\ (\mathrm{G}\mathrm{S}\mathrm{T}124) \end{array}$	50	50		н Б Ш а	н Б Ш а
$\begin{array}{c} \mathrm{G}\mathbf{e}_1\mathrm{S}\mathbf{b}_4\mathrm{T}\mathbf{e}_7\\ (\mathrm{G}\mathrm{S}\mathrm{T}\ \mathrm{I}47) \end{array}$	33	66	т У с я	т Ц с я	т с я
G	ST + N		увеличивается	R _{SET} увелич	ивается
G	$ST + O_2$		Отношение R _{RESET} / R _{SET} увеличивается		

Рис.2.39. Влияние химического состава на характеристики ячеек памяти на фазовых переходах.

Рис. 2.40. Сравнение памяти на фазовых переходах и топологической памяти.

Рис. 2.41. Зависимость сопротивления от величины тока программирования для многоуровнего элемента памяти на фазовых переходах.

Раздаточный материал по дисциплине «Физика и технология неупорядоченных полупроводников» © Попов А. И. popovai@mpei.ru

Рис. 2.42. Зависимость сопротивления от тока записи для 2-х битовой ячейки.