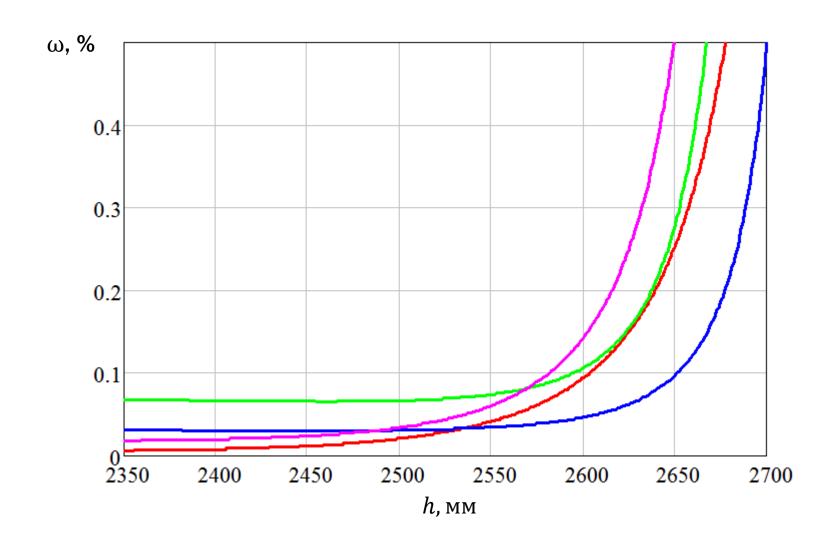

V Международная н.п. конференция «Автоматизированные системы управления технологическими процессами», 18 марта 2025 г.

ЗКОНОМИКА И БЕЗОПАСНОСТЬ ПРИ УПРАВЛЕНИИ ПАРОГЕНЕРАТОРАМИ АЗС С ВВЗР


Автор: Парчевский Валерий Михайлович (НИУ «МЭИ»)

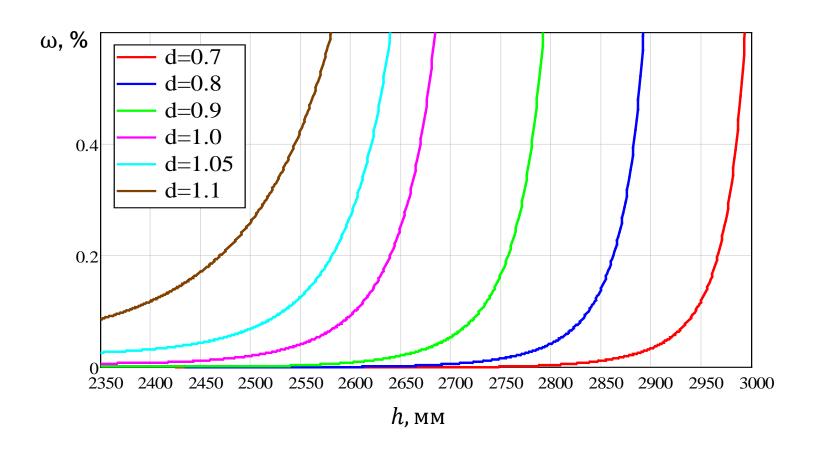
ТЕХНОЛОГИЧЕСКАЯ СХЕМА ЭНЕРГОБЛОКА АЭС С РЕАКТОРОМ ВВЭР-1000

- 1 -реактор; 2 -парогенератор; 3 -ГЦН; 4 -компенсатор объема; 5 -турбина;
- 6 конденсатор; 7 конденсатный насос; 8 группа ПНД; 9 деаэратор;
- 10 питательный насос; 11 группа ПВД; 12 генератор; 13 гидроаккумулирующая емкость.

РАЗБРОС СЕПАРАЦИОННЫХ ХАРАКТЕРИСТИК ПАРОГЕНЕРАТОРОВ ПРИ НОМИНАЛЬНОЙ НАГРУЗКЕ

ДВУМЕРНАЯ СЕПАРАЦИОННАЯ ХАРАКТЕРИСТИКА

$$\omega_{a} = \frac{a_{1}(d)}{[a_{2}(d) + h]^{2}} + \frac{a_{3}(d)}{a_{2}(d) + h} + a_{4}(d)$$


$$a_1(d) = \frac{a_{10}}{a_{11} + d} + a_{12}$$

$$a_2(d) = a_{20} + a_{21}d + a_{22}d^2 + a_{23}d^3 + a_{24}d^4 + a_{25}d^5$$

$$a_3(d) = \frac{a_{30}}{a_{31} + d} + a_{32}$$

$$a_4(d) = a_{40} + a_{41}d + a_{42}d^2 + a_{43}d^3 + a_{44}d^4 + a_{45}d^5 + a_{46}d^6$$

ДВУХМЕРНАЯ СЕПАРАЦИОННАЯ ХАРАКТЕРИСТИКА ПАРОГЕНЕРАТОРА ПРИ РАЗНЫХ НАГРУЗКАХ

КРИТЕРИЙ ЭФФЕКТИВНОСТИ УПРАВЛЕНИЯ ПАРОГЕНЕРАТОРАМИ (ЦЕЛЕВАЯ ФУНКЦИЯ)

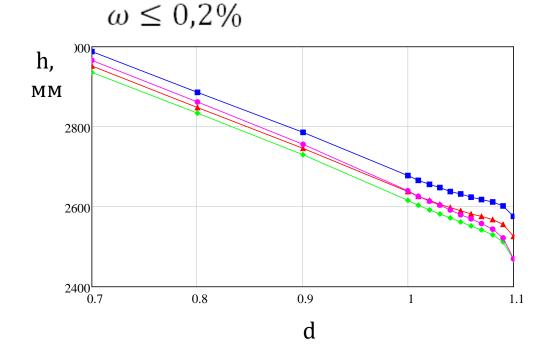
$$R = L - P$$

где

R (Result) – суммарный ущерб (целевая функция), руб/ч;

L (Loss) – экономические потери, руб/ч;

Р (Profit) – выгода, руб/ч,


причем

$$R, L, P = f(h1, h2, h3, h4, d1, d2, d3, d4)$$

ОГРАНИЧЕНИЯ НА УРОВНИ ВОДЫ В ПАРОГЕНЕРАТОРАХ

$$h_i^{min} \le h \le h_i^{max}$$

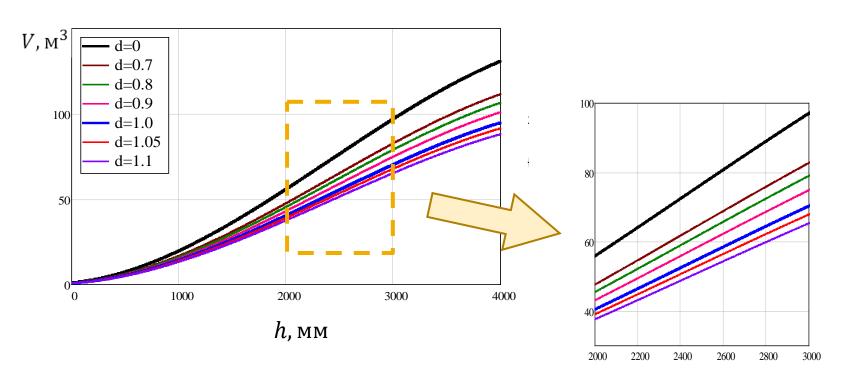
2350 мм

ЭКОНОМИЧЕСКАЯ СОСТАВЛЯЮЩАЯ ЦЕЛЕВОЙ ФУНКЦИИ

По данным ОАО «ВНИИАМ»:

на 1%

на 7 МВт

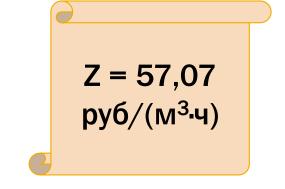

№ на 0,85 %

При себестоимости вырабатываемой электроэнергии 1,5 руб/(кВт*ч) потери составляют 10500 руб/чили 92 млн руб/год

СОСТАВЛЯЮЩАЯ ЦЕЛЕВОЙ ФУНКЦИИ, ОТРАЖАЮЩАЯ БЕЗОПАСНОСТЬ

РАСЧЕТ СУММАРНОГО ОБЪЕМА ВОДЫ В ПАРОГЕНЕРАТОРАХ

Зависимость объема воды в парогенераторе от уровня при разных нагрузках


СОСТАВЛЯЮЩАЯ ЦЕЛЕВОЙ ФУНКЦИИ, ОТРАЖАЮЩАЯ БЕЗОПАСНОСТЬ

Оценка стоимости запаса воды в парогенераторе

$$Z = E \cdot K + C$$

где

Z – годовые затраты, руб/год;

- Е ставка рефинансирования ЦБ РФ, отражающая нижний порог эффективности капитальных вложений;
- К капитальные затраты на приобретение, монтаж и вывод из эксплуатации оборудования САОЗ, руб/год;
- С годовые эксплуатационные затраты на поддержание в работе САОЗ, руб/год.

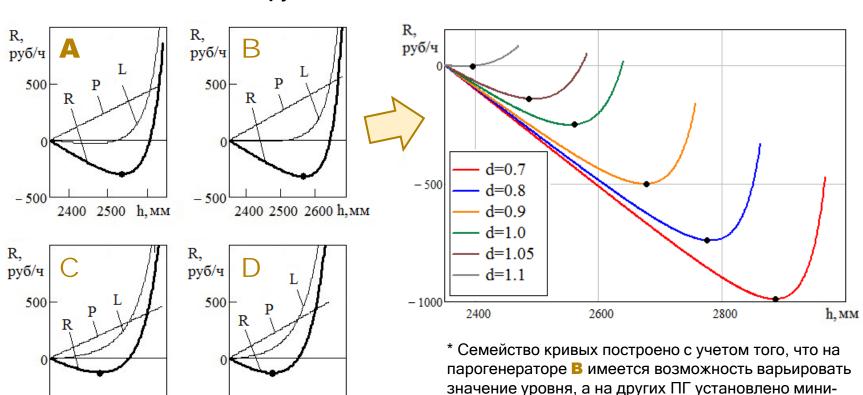
ОЦЕНКА СТОИМОСТИ ВОДЫ В ГИДРОЕМКОСТЯХ ПАССИВНОЙ САОЗ

СТРУКТУРА УЧИТЫВАЕМЫХ ЗАТРАТ (в ценах 2016 г.)

№ п/п	Наименование элементов затрат	Обозна- чение	Размерность	Расчетная формула	Значение					
1	Полные затраты	Z	руб/год	E-K+C	1,0005·10 ⁸					
1.1	Затраты на 1 м ³ /ч	zw	руб/(м ³ /ч)	Z/(Vpv·h)	57,07					
2	Ставка рефинансирования ЦБ РФ	E	-	-	0,1028					
3	Капитальные затраты на приобретение, монтаж и вывод из эксплуатации	К	руб	K1+K2+K3+K4	5,686-108					
4	Годовые эксплуатационные затраты	С	руб/год	C1+C2+C3+C4	4,159·10 ⁷					
Структура капитальных затрат										
3.1	Поставка и монтаж оборудования	K1	руб		1,706·10 ⁸					
3.2	Строительные и монтажные работы (CMP)	K2	руб	1,667·K1	2,843·10 ⁸					
3.3	Проектно-изыскательские работы (ПИР)	К3	руб	0,375 K 1	0,6398·10 ⁸					
3,4	Иные расходы	K4	руб	0,292·K1	0,4976.108					
Структура эксплуатационных затрат										
4.1	Амортизационные отчисления	C1	руб/год	K·(1/T)	1,895·10 ⁷					
4.2	Вывод из эксплуатации	C2	руб/год	0,25·C1	0,4739·10 ⁷					
4.3	ТОИР	C3	руб/год	0,0669·K1	1,175·10 ⁷					
4.4	Прочие издержки	C4	руб/год	0,20(C1+C3)	$0,6142\cdot10^7$					

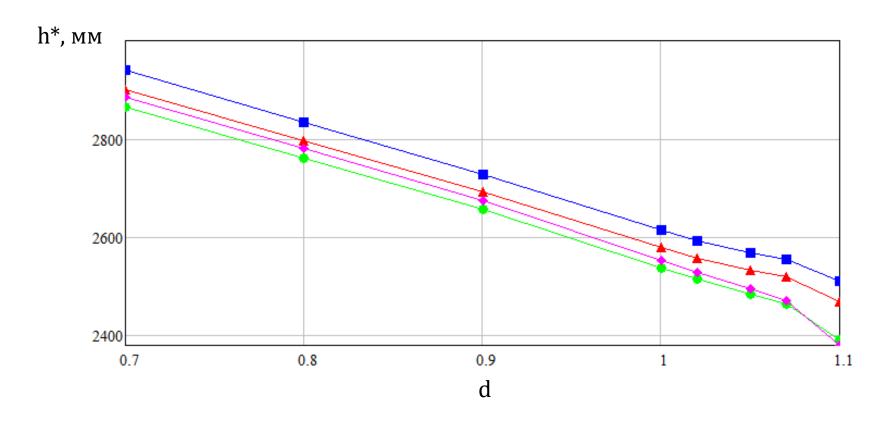
РАСЧЕТ ОПТИМАЛЬНЫХ ЗНАЧЕНИЙ УРОВНЕЙ В ПАРОГЕНЕРАТОРАХ

Номинальная нагрузка


-500

2400 2500 2600 h, MM

2500 h, MM


-500

2400

мально возможное значение уровня - 2350 мм.

ОПТИМАЛЬНЫЕ ЗНАЧЕНИЯ УРОВНЕЙ В ПАРОГЕНЕРАТОРАХ

^{*} Семейство кривых построено для случая, когда на всех парогенераторах установлены оптимальные значения уровня воды, полученные в результате минимизации целевой функции .

ЗАКЛЮЧЕНИЕ

- Определение оптимального уровня воды в парогенераторе АЭС по КОМПЛЕКСНОМУ критерию существенно смещает значение уровня в сторону больших значений;
- Эффект от использования ДСХ в управлении работой парогенераторов (по сравнению с базовым вариантом, когда уровень на всех ПГ установлен 2400мм) тем больше, чем ниже нагрузка, на которой работает ПГ.

d	0,7	0,8	0,9	1,0	1,05	1,1
U _{опт} – U ₂₄₀₀ , руб/ч	-3769	-2779	-1838	-890	-509	-129

^{*} Знак «-» означает, что есть выигрыш от установления на парогенераторах оптимальных уровней.

СПАСИБО ЗА ВНИМАНИЕ